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Abstract

The sustainability of cooperation is crucial for understanding the progress of soci-

eties. We study a repeated game in which individuals decide the share of their income

to transfer to other group members. A central feature of our model is that individuals

may, with some probability, switch incomes across periods—our measure of income

mobility—while the overall income distribution remains constant over time. We an-

alyze how income mobility and income inequality affect the sustainability of contri-
bution norms—informal agreements about how much each member should transfer to

the group. We find that greater income mobility facilitates cooperation. In contrast,

the effect of inequality is ambiguous and depends on the progressivity of the contribu-
tion norm and the degree of mobility. We apply our framework to an optimal taxation

problem to examine the interaction between public and private redistribution.
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1 Introduction

Income inequality and income mobility jointly shape incentives for cooperation.1 While
inequality provides a snapshot of the income distribution, mobility reflects the poten-
tial for individuals to change their income over time. Milton Friedman famously noted
that the importance of inequality depends on whether it reflects temporary differences
or entrenched long-run status: “A major problem in interpreting evidence on the distribution
of income is the need to distinguish between two basically different kinds of income inequality:
temporary, short-run differences in income, and differences in long-run income status” (Fried-
man, 1962, p. 171). This quote emphasizes the instrumental role of mobility in shaping
the normative interpretation of inequality. Despite the importance of income mobility,
it is rarely incorporated into theoretical models of cooperation. This omission can lead
to misleading predictions: the same level of inequality may foster or hinder cooperation
depending on how likely individuals are to change their income over time.

This paper examines how the interaction between inequality and mobility affects co-
operation in repeated interactions. To investigate this interaction, we develop a tractable
theoretical framework that captures the interplay between income inequality, income mo-
bility, and contribution norms. The model features three key parameters: a mobility pa-
rameter that governs the likelihood of individuals changing their income over time, an
inequality parameter that determines the dispersion between individuals’ incomes, and
a progressivity parameter that characterizes the shape of the contribution norm—how so-
ciety dictates transfers should vary with income. This parsimonious structure allows us
to isolate each component’s effect and analyze how their interaction influences the sus-
tainability of cooperation. While previous work has emphasized that income mobility is
instrumentally valuable because it reduces long-term inequality (Jäntti and Jenkins, 2015),
our contribution is to show that mobility also plays a critical role in sustaining coopera-
tion.

Setting The simplest version of the model consists of an organization with two individ-
uals who differ in their incomes. They play an infinitely repeated stochastic game where, in
each period, they decide what share of their income to transfer to the organization, which
equally distributes transfers among its members. This stage game is infinitely repeated,

1Given that we keep the income distribution constant, income mobility is interpreted as relative in-
come mobility: changes in the relative positions of individuals within the income distribution over time
(Shorrocks, 1978a). This is particularly relevant in the intragenerational context, where mobility is viewed
as movement within a fixed income structure rather than across generations (Jäntti and Jenkins, 2015).
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and individuals maximize the discounted sum of their utility, given complete informa-
tion about the history of contributions. Contributing to the organization is individually
costly—any amount transferred reduces one’s material payoff—but aggregate utility is
maximized when both individuals transfer their entire income to the organization. Al-
though individuals are solely concerned with their material payoffs, even high-income
individuals may have incentives to contribute to the organization, as their prospect of
becoming low-income in the future makes the benefits of redistribution valuable to them
over time.

Our model has three key features. First, with some probability, individuals switch
roles: the rich individual becomes poor, and the poor individual becomes rich. We model
income mobility as a homogeneous Markov process over the set of individual rankings,
where each state represents a specific ordering of individuals by income. This transition
is governed by a parameter m ∈ [0,1], which captures the degree of income mobility
within the organization. When m = 0, the individuals remain in the same role in all
periods; the organization has no income mobility. When m = 1, the individuals have
the same probability of moving to either role; the organization has full income mobility.
More generally, higher values of m correspond to a greater probability of switching roles
and, thus, greater income mobility within the organization. This approach aligns with
standard stochastic models of income dynamics while allowing us to embed mobility
into a repeated-game framework where strategic cooperation is endogenous.

Second, the organization’s income distribution remains constant over time. Although
individuals may change their income level, the organization’s total income and income
levels are fixed. To measure income inequality, we use the Atkinson index in which a
parameter α ≥ 0 governs income inequality (Atkinson, 1970). When α = 0, all income
types receive the same share of the endowment; the organization has full income equality.
When α → ∞, all income becomes concentrated in the highest income type; the organi-
zation has full income inequality. More generally, the higher α, the higher the inequality
within the organization.

Third, the organization’s members have an informal shared agreement on the trans-
fers individuals should make to the organization given their income, referred to as the
contribution norm (Reuben and Riedl, 2013). This agreement can be interpreted as a so-
cial norm of behavior that dictates how people should behave in society (Bicchieri, 2008;
Burke and Young, 2011). We consider a set of norms parametrized by a parameter β ≥ 0
that governs the progressivity of the agreement. When β ∈ (0,1), the rule is regressive:
rich individuals contribute more in absolute terms but less in relative terms. When β > 1,
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the rule is progressive: rich individuals contribute more in absolute and relative terms.

In this paper, instead of focusing on characterizing the set of Subgame Perfect Nash
Equilibria (SPNE), we focus on characterizing the lowest discount factor δ such that the
outcome in which all individuals follow the contribution norm is an SPNE. We focus on
the latter for three main reasons. First, this outcome is normatively appealing: it repre-
sents the outcome in which all individuals follow the group’s agreement, aligning with
the government’s perspective or the community norms (Caplin and Schotter, 2008; Dold
et al., 2018). Second, cooperative outcomes are commonly observed in empirical settings
involving informal redistribution, such as risk-sharing arrangements in villages or among
co-workers (Dercon, 2005; Dubois et al., 2008; Mobarak and Rosenzweig, 2013). Third, fo-
cusing on a unique outcome allows for transparent comparative static analysis, which
would be challenging with the set of SPNE.

Results We show three main results. First, as long as the organization has a positive
degree of income mobility, the contribution norm can be sustained if individuals are suffi-
ciently patient. This result is important as cooperation is never sustainable when m = 0.
Hence, cooperation is discontinuous when changing from zero to positive mobility. More
generally, income mobility facilitates cooperation among its members for any level of in-
come inequality and progressivity of the contribution norm.2 Intuitively, income mobility
enhances high-income individuals’ incentives to cooperate, as it raises the probability
that they might eventually become low-income, benefiting from the contribution norm.
This prospect strengthens the value of cooperation as a form of intertemporal insurance,
encouraging individuals to contribute even when they are currently better off.

Second, inequality has an ambiguous effect on cooperation, which crucially depends
on the degree of progressivity of the contribution norm. When contribution norms are re-
gressive, higher inequality has a positive effect on cooperation. On the other hand, when
contribution norms are progressive, the relationship between inequality and cooperation
is non-monotonic, especially when income mobility is low. Intuitively, when contribu-
tion norms are regressive, higher inequality makes it less costly for the rich to comply,
strengthening cooperation. In contrast, with progressive norms, increasing inequality
places a greater burden on the rich, which can discourage compliance, especially when
the rich expect to remain in that position in the future.

Finally, we endogenize the contribution norm β guided by evolutionary foundations:
groups better able to sustain cooperation are more likely to survive, reproduce their

2More formally, the lowest discount factor δ such that the cooperative outcome is an SPNE is decreasing
on m for any α > 0 and β ≥ 0.
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norms, or be imitated.3 In this framework, given inequality α and income mobility m,
we define the optimal long-run norm β∗(α,m) as the β ≥ 0 that minimizes the threshold
discount factor δ required for cooperation to be sustainable. This selection criterion cap-
tures the evolutionary fitness of contribution rules: the lower the δ, the more likely it is
that cooperation can be sustained in a population with heterogeneous individuals.4

We characterize how the optimal norm depends on inequality and mobility. A cen-
tral finding is that the selected norm can be either progressive or regressive, depending
on the environment. More generally, as inequality rises, the optimal norm initially be-
comes more progressive but eventually becomes less progressive beyond a critical level
of inequality. In contrast, higher mobility consistently reduces the optimal degree of pro-
gressivity, as individuals are more likely to move across income ranks.

Application We extend the model to study the interaction between private and public
redistribution (Alesina and Angeletos, 2005; Krueger and Perri, 2011). Specifically, we
add a policy stage in which a benevolent utilitarian government sets a proportional in-
come tax before individuals engage in voluntary transfers. The government collects taxes
and redistributes a fraction of the revenue equally among group members. After taxa-
tion, individuals decide how much of their disposable income to voluntarily transfer to
others. We analyze how the optimal tax rate depends on income inequality and mobility,
and how it interacts with the prevailing contribution norms.

The analysis establishes a regime-dependent relationship between public and private
redistribution. When voluntary cooperation cannot be sustained for any tax rate, the
government is the sole provider of redistribution, and the optimal tax rate increases with
income inequality. When voluntary cooperation is sustainable, voluntary transfers reduce
the need for public redistribution. In this case, the welfare-maximising tax rate decreases
with inequality, income mobility, and the progressivity of the contribution norm. These
results indicate that public and private redistribution are substitutes and that the design
of tax policy depends on the incentive compatibility of private cooperation. Ignoring
endogenous cooperation can lead to different policy prescriptions, especially in settings
with high mobility or well-defined informal norms. This complements previous work on

3This approach reflects a form of cultural evolution, where successful norms are those that facilitate
cooperation and persist through differential imitation or institutional adoption (Witt, 1993; Safarzyńska
and van den Bergh, 2010). This relates to the broader research on the evolution and emergence of social and
moral norms (Alger and Weibull, 2007, 2010; Alger, 2025).

4The intuition is that in a group of N individuals, cooperation is only sustainable if δi ≥ δ for all i ∈
{1,2, ..., N}. If individual discount factors are independently drawn from a common distribution, then a
lower δ increases the probability that the group can sustain cooperation.
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the political economy of redistribution, which typically assumes either public or private
transfers as exogenous (e.g., Alesina and Angeletos, 2005; Benabou and Ok, 2001).

Related Literature This paper relates to several strands of literature on income mobility,
redistribution, and informal cooperation. Empirical studies document substantial varia-
tion in income mobility across space and time (Chetty et al., 2014, 2017; Deutscher and
Mazumder, 2023). In the United States, relative mobility has remained stable, but ris-
ing inequality has magnified the consequences of the birth lottery (Chetty et al., 2014).
Different mobility metrics can also yield different policy implications (Deutscher and
Mazumder, 2023), underscoring the importance of mobility as both an outcome and a
determinant of expectations.5

Theoretically, models such as Benabou and Ok (2001) and Acemoglu et al. (2018) for-
malize mobility using Markovian income and status transitions, respectively. Our frame-
work differs from these studies by focusing on intra-personal (rather than intergenera-
tional or group-based) mobility, allowing for downward income transitions and abstract-
ing from dynastic preferences. We examine how such individual income dynamics affect
the sustainability of redistribution through voluntary transfers, holding group structure
and intergenerational links constant.

Our analysis also builds on the literature on informal risk-sharing under limited com-
mitment (Thomas and Worrall, 1988; Kocherlakota, 1996). In these settings, cooperation
is sustained by future punishment threats, and efficient allocations are constrained by
enforceability. We depart from this work by considering an environment with N ≥ 2 in-
dividuals and introducing income mobility as a central parameter. This allows us to iso-
late how dynamic risk exposure interacts with cooperation incentives in group settings
in which individuals may use social norms to coordinate and insure themselves against
negative income shocks.

Outline The remainder of the paper is organized as follows. In Section 2, we present the
theoretical framework. In Section 3, we characterize the general solution. In Section 4, we
conduct several comparative statics. In Section 5, we apply our framework to an optimal
taxation problem. In Section 6, we conclude. All mathematical proofs are in Appendix A.

5For a broader review of the link between inequality and mobility, see Durlauf et al. (2022). For compre-
hensive overviews of mobility concepts, measurement, and trends, see Fields and Ok (1999) and Jäntti and
Jenkins (2015).
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2 Theoretical model

2.1 Stochastic game

To model repeated cooperation, we consider an infinitely repeated stochastic game; a gener-
alization of infinitely repeated games.6 In stochastic games the stage game may change
over time due to players’ behavior and chance. In our setting, we consider a stochastic
game with (i) a finite set of states, (ii) a finite number of players, (iii) a common action set,
(iv) a transition probability matrix that only depends on chance, and (v) perfect monitor-
ing. More formally, the game is a tuple (S, N, A, P,Π), where:

• S is a finite set of states.

• N is a finite number of players.

• A = A1 × ...× An is the action set.

• P : S× S→ [0,1] is a transition probability function.

• Π = π1 × π2 × ...× πn is the payoff function set.

In our application, the states represent the income rankings of the players, while the tran-
sition probability function P represents the probability of moving to any state at t + 1
given the state in period t.

2.2 Stage game

Each stage game is composed of N ≥ 2 players who differ in which of the N positions they
have been assigned. Each position is allocated a deterministic income w1 > ... > wN > 0.
Thus, the player assigned to position i receives an income of wi. There is a total of N!
states, each representing an income rank in the organization. After players learn their
positions, they decide the share of their income to transfer to the organization. The total
amount transferred is equally shared among the group members. The amount transferred
by player i ∈ {1, ..., N} in position k ∈ {1, ..., N}, in period t ∈ {1,2, ...} is denoted by
xt

i,k ∈ [0,1].

6Stochastic games were introduced in Shapley (1953). For detailed discussions, see Neyman and Sorin
(2003), Amir (2003), and Solan and Vieille (2015). Stochastic games have been used mainly in resource-
extraction problems (Levhari et al., 1980) but also in industrial organization (Ericson and Pakes, 1995) and
inspection problems (Baston and Bostock, 1991; Darlington et al., 2023).
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Players’ material payoff in the stage game depends on players’ choices and their in-
comes. For simplicity, we assume that in the first period, individual i is allocated to
position i, and refer to x1

i,i as x1
i . In that case, player i’s material payoff at t = 1 is given by:

πi(x1
i ; x1
−i) = wi(1− x1

i ) +
1
N

N

∑
j=1

x1
j wj, (1)

where x1
−i refers to the strategy profile of all players except i. Players evaluate their ma-

terial payoff with an increasing and strictly concave function u (i.e., u′ > 0 and u′′ < 0).
Thus, players decrease their utility when transferring money to the organization, but hav-
ing all players doing so is socially efficient.7

2.3 Income mobility

We model income mobility as a homogeneous Markov process over the set of states. The
transition matrix specifies the probability of moving from one state to another across
periods, assuming that transitions are governed by chance and not by individual ac-
tions. The model satisfies three standard assumptions from the mobility literature: (i) the
Markov property—transitions depend only on the current state and not on prior history
(McFarland, 1970); (ii) time-homogeneity—transition probabilities are constant over time
(Shorrocks, 1978b); and (iii) exogeneity—mobility arises independently of individuals’ be-
havior, reflecting institutional or environmental randomness (Prais, 1955; Fields and Ok,
1999).

The degree of mobility is governed by a single parameter m ∈ [0,1], with m = 0 rep-
resenting full persistence (identity matrix) and m = 1 corresponding to maximal mobility
(uniform transitions across permissible states). Our formulation maintains a fixed income
distribution across periods and captures pure exchange mobility through probabilistic re-
rankings. This structure aligns with the literature on transition matrices while enabling
us to embed mobility into a repeated-game framework with strategic interactions. When
N = 2, we consider the following transition matrix:

7This formulation is equivalent to assuming that players evaluate their monetary payoffs with a linear
function u(x) = x and that contributions to the organization are multiplied by a parameter γ > 1, as in
linear public goods games (Zelmer, 2003).
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( sij sji

sij 1− 1
2 m 1

2 m
sji

1
2 m 1− 1

2 m

)
where sij represents the state where player i and j are in the first and second position,
respectively.8 The rows of the matrix represent the state at period t, and the columns
represent the state at t + 1. Each cell represents the probability of moving from a given
state at t to a given state at t + 1. The parameter m ∈ [0,1] represents the degree of income
mobility. When m = 0, the organization has no income mobility (i.e., players remain in
the same position with certainty). When m = 1, there is full income mobility (i.e., each
player moves to any position with equal probability). More generally, the larger m, the
more likely players are to switch positions.

When N > 2, we define S′(s) ⊂ S to be the set of states such that there is no player in
the same position as in s ∈ S.9 We consider the following transition matrix:

µs,s′ =


1− N−1

N m if s = s′,
1
N m if s′ ∈ S′(s),

0 otherwise.

(2)

Here, µs,s′ denotes the probability of moving from state s at period t to state s′ at period
t+ 1. The transition probability matrix is constructed then by computing µs,s′ for each pair
of states. With the proposed transition matrix, each player has a probability of 1− N−1

N m
to remain in the same position, and a probability of 1

N m to move to a different one. When
N = 3, the transition matrix is given by



sijk sikj sjik sjki skij skji

sijk 1− 2
3 m 0 0 1

3 m 1
3 m 0

sikj 0 1− 2
3 m 1

3 m 0 0 1
3 m

sjik 0 1
3 m 1− 2

3 m 0 0 1
3 m

sjki
1
3 m 0 0 1− 2

3 m 1
3 m 0

skij
1
3 m 0 0 1

3 m 1− 2
3 m 0

skji 0 1
3 m 1

3 m 0 0 1− 2
3 m


8The income distribution is constant across periods and states. That is, there is always a player with a

high and one with a low income.
9For example, when s = sijk, S′(sijk) = {sjki, skij}.
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As before, when m = 0, players remain in the same position with certainty, while when
m = 1, they have the same probability to move to any position.10

Despite its simplicity, the transition matrix is in line with the definition of relative
social mobility proposed in Behrman et al. (2000): “Holding total income and income dis-
tribution constant, after all, relative social mobility is greater if wealthier people more frequently
change places with poorer people than if such exchanges occur less frequently” (p. 74).11

2.4 Income inequality

Following the Atkinson index (Atkinson, 1970), we define each income level as follows:

wi(α) =
exp(α(N − i + 1))

∑N
j=1 exp(α(N − j + 1))

∈ [0,1], (3)

where i ∈ {1,2, . . . , N} is the index of the income type, and α ≥ 0 is a parameter that
governs the degree of inequality. For any α ≥ 0, the total income is normalized to 1,

∑N
i=1 wi(α) = 1.

When α = 0, there is full income equality, with wi =
1
N for any i ∈ {1, ..., N}. As α in-

creases, higher income types are allocated progressively larger shares, thereby increasing
income inequality. In the limit, as α→∞, there is full income inequality, with w1 = 1 and
wi = 0 for any i ∈ {2, ..., N}. Thus, higher values of α are associated with greater income
inequality within the organization.

2.5 Types of sharing rules

We study the sustainability of sharing rules in which players’ contributions to the or-
ganization may be a function of their income level. More concretely, we focus on the
parametrization where the share contributed by an player with income wi is given by:

θ(wi) = wβ
i ∈ [0,1], (4)

10Our mobility parameter m can be interpreted analogously to a class of mobility indices, such as the Prais
index (Prais, 1955). In our setting, applying the Prais index to the transition matrix yields Prais(P) = m

N−1 .
This aligns with our interpretation of m as the degree of income mobility. While we do not propose a new
index, our framework embeds this parametric measure of mobility directly into a repeated-game structure.

11A limitation of our transition matrix is that moving across positions does not depend on the distance
between them. For example, in the N = 3 case, the players in the second and third income rank have the
same probability of moving to the first income rank. Accounting for this would require a more complex
transition matrix with additional parameters, complicating the analysis.
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where β ≥ 0 determines the degree of progressivity of the sharing rule.12 When β = 0,
all players should contribute all their endowment. If 0 < β < 1, the contribution rule
is regressive: high-income players should contribute more in absolute terms, but less in
relative terms. When β = 1, contributions are exactly proportional to income. When
β > 1, the contribution rule is progressive: higher-income players should contribute more
than proportionally.

In our main analysis, we consider contribution norms as (exogenous) parameters that
societies are endowed with. That is, rather than deriving these norms from individual
optimization, we take them as given and explore how income mobility and income in-
equality affect their sustainability.13 We motivate this with the findings of Reuben and
Riedl (2013), who document, in a public goods game experiment with heterogeneous en-
dowments, that income heterogeneity gives rise to “a plurality of normatively appealing rules
of behavior that are potential candidates for emerging contribution norms" (p. 15).

2.6 Visual representation when N = 2

Figure 1 displays a visual representation of the game when N = 2. In this case, each
period has two possible states depending on the income ranks assigned to players i and j.
At t = 1, the game starts in state si,j or sj,i. Players i and j simultaneously choose the share
of their income to transfer to the organization. Both players observe the transfers, and
their monetary payoffs are determined according to equation 1. At t = 2, with probability
1− 1

2 m, the players remain in the same position, and with probability 1
2 m, they switch

positions. Players observe the realized state and choose their transfers. This process
continues indefinitely.

12Since wi is between 0 and 1, θ(wi) is also between 0 and 1, consistent with interpreting θ(wi) as the
share of income one should transfer.

13In Section 4.3, we endogenize contribution norms with evolutionary foundations.
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Figure 1: Visual representation of the N = 2 game.

2.7 Notation and Equilibrium Concept

We now describe the main components of the game when N = 2.14 Let st ∈ {si,j, sj,i}
denote the state realized in period t, and let st = (s1, s2, . . . , st) ∈ St denote the history of
states up to period t. Correspondingly, let xt(st) denote the profile of contributions made
in period t given st. For instance, if st = si,j, then

xt(si,j) = {xt
i,1, xt

j,2}, (5)

where xt
i,1 ∈ [0,1] is the share of income that player i contributes while occupying the

first position. Let xt = (x1(s1), x2(s2), . . . , xt(st)) denote the full history of observed con-
tributions and states up to period t. A strategy for player i is a mapping that assigns a
contribution level given the full public history xt−1 and the current state st. Formally,

xt
i,k : xt−1 × st→ [0,1], (6)

where k ∈ {1,2} denotes the position occupied by player i in state st. Players share a
common discount factor δ ∈ [0,1) and maximize their expected discounted sum of utility
over an infinite horizon. The equilibrium concept is Subgame Perfect Nash Equilibrium

14The notation easily generalizes to the case with N > 2.
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(SPNE). A strategy profile {x∗i , x∗j } is an SPNE if, at every history (xt−1, st), the continua-
tion strategies form a Nash equilibrium of the subgame starting at that point. That is, for
each player i,

x∗i ∈ argmax
x̂i

Ui(x̂i, x∗j | xt−1, st), (7)

where Ui denotes player i’s expected discounted utility from period t onward.

3 General solution

We characterize the conditions under which cooperation can be sustained in all periods.
We define the cooperative strategy as the strategy in which the player follows the contribu-
tion norm as long as others also do so. For player i, the cooperative strategy is defined as
follows:

• At t = 1, select x1
i = wβ

i .

• For t > 1: If in all previous periods τ < t, each player j ∈ {1, . . . , N} has selected
xτ

j,k = wβ
k for their respective position k, then choose xt

i,k = wβ
k . Otherwise, select

xt
i,k = 0.

The cooperative outcome corresponds to the outcome in which all players follow the
cooperative strategy. To determine when the cooperative outcome constitutes a SPNE,
we compare the discounted expected payoff of cooperation with that of deviation. We
focus on the most profitable one-shot deviation: contributing zero in the first period.

We denote by Vc
i , Vd

i , and Va
i , player i’s expected discounted payoffs from cooper-

ation, deviation, and autarky, respectively. Under the cooperative outcome, each player
contributes according to the rule θ(wi) = wβ

i in every period. The value of cooperation is

Vc
i = u(wc

i ) + δ

[(
1− N − 1

N
m
)

Vc
i +

m
N ∑

j,i
Vc

j

]
, (8)

where

wc
i = [1− θ(wi)]wi +

1
N

N

∑
j=1

θ(wj)wj. (9)

The first term of equation 9 corresponds to the income kept after contributing θ(wi)wi,
while the second term reflects the equally shared benefit from the public good. The value
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of deviation is

Vd
i = u

(
wi +

1
N ∑

j,i
θ(wj)wj

)
+ δ

[(
1− N − 1

N
m
)

Va
i +

m
N ∑

j,i
Va

j

]
. (10)

The first term of equation 10 represents the one-shot gain from not contributing, while
the second term represents the discounted continuation value under autarky, in which all
players revert permanently to the non-cooperative outcome, defined as:

Va
i = u(wi) + δ

[(
1− N − 1

N
m
)

Va
i +

m
N ∑

j,i
Va

j

]
. (11)

In Appendix A, we derive closed-form expressions for Vc
i , Vd

i , and Va
i as functions of the

model’s primitives. Lemma 1 characterizes how the first-type player’s values of cooper-
ation and deviation, Vc

1 and Vd
1 , change with m and α.

Lemma 1 (Comparative statics for type i = 1). Let Vc
1 and Vd

1 denote the cooperative and
deviation payoffs for the richest type. Then, there exists a threshold function m(β) > 0 such that:

∂Vc
1

∂m
=

0 if β = 0,

< 0 if β > 0,

∂Vd
1

∂m
< 0,

∂Vc
1

∂α
=

0 if β = 0,

< 0 if β > 0,

∂Vd
1

∂α
=


0 if β = 0,

< 0 if β ∈ (0,m(β)),

> 0 if β > m(β).

Lemma 1 characterizes how the value of cooperation and the value of deviation for
the richest player changes with income mobility (m) and income inequality (α). When
β = 0, all individuals contribute the same share of their income regardless of their type,
and changes in m and α do not affect the richest player’s value from cooperation. When
β > 0, an increase in mobility reduces both the value of cooperation and the value of
deviation, as it raises uncertainty about future positions and weakens the link between
present actions and future benefits. The effect of inequality on the deviation value is
non-monotonic: for low values of β, rising inequality discourages deviation, but when
β is high, the burden of contributing rises faster than the corresponding benefit, making
deviation more attractive. This trade-off is captured by a threshold function m(β), which
separates the two regimes.
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Lemma 2. Let N ≥ 2, w1 > w2 > · · · > wN, δ ∈ (0,1), m ∈ [0,1], and β ≥ 0. Then, the value
of deviation satisfies: Vdev

1 > Vdev
2 > · · · > Vdev

N .

Lemma 2 shows that richer individuals have stronger incentives to deviate from coop-
eration. This holds even when the value of cooperation varies across types due to redis-
tributive norms (i.e., β > 0), because the private gains from defection and the continua-
tion value in autarky both increase with income and outweigh the non-monotonic effects
arising from cooperation under progressive norms. This observation plays a crucial role
in determining whether cooperation can be sustained in equilibrium: if the richest type
finds it optimal to cooperate, then all lower-income types—who face weaker incentives to
defect—will also choose to cooperate. Thus, the sustainability of cooperation boils down
to checking the richest’ type incentive condition. Proposition 1 formalizes this insight.

Proposition 1. The set of discount factors that guarantees cooperation for all individuals is given
by the interval D = [δ,1], where δ ∈ (0,1) is the unique discount factor such that Vc

1 = Vd
1 .

Proposition 1 characterizes the conditions under which cooperation can be sustained
in equilibrium. The result indicates that the richest individual typically faces the strongest
incentive to defect. If this individual prefers to adhere to the cooperative strategy, others
will follow as well. The minimum discount factor δ is implicitly defined by the indiffer-
ence point where the richest player’s cooperative and deviation payoffs coincide. There-
fore, cooperation can be sustained in equilibrium whenever δ ≥ δ.

4 The effect of income mobility and income inequality

In this section we study how does δ vary with m and α.

4.1 The role of income mobility

Lemma 3 shows that increasing income mobility has a positive effect on sustaining coop-
eration.

Lemma 3. Let δ denote the minimum discount factor that sustains cooperation for all individuals,
as defined in Proposition 1. Then:

(i) If m ∈ (0,1], then δ < 1. If m = 0, then δ = 1.

15



(ii) For all m ∈ (0,1], then ∂ δ
∂m < 0.

When m = 0, cooperation cannot be sustained for any δ < 0. Intuitively, the richest
individual is certain that it will remain forever in the highest position, and therefore its
autarky payoff is higher than the cooperation payoff. In this case, high-income players
have nothing to lose from deviation, as they enjoy a higher utility outside the cooperative
agreement. When m > 0, future income becomes uncertain. This uncertainty reduces the
long-run value of deviation because a rich player is more likely to transition into a lower-
income position, where the value of autarky is lower. In contrast, the cooperative payoff
remains relatively stable due to the smoothing effect of public good provision. Increasing
m, amplifies the gap between the relatively stable cooperative payoff and the declining
deviation payoff, thereby reducing the minimum discount factor δ required to sustain
cooperation.15

Figure 2 illustrates how δ varies with income mobility m, across different levels of
inequality α when β = 0.

Figure 2: Minimum discount factor δ required for cooperation as a function of income mobility m,
for different levels of inequality α. Parameters: ρ = 1, β = 1, N = 3.

15The effect is particularly strong when β = 0, where contributions are independent of income and co-
operative payoffs remain constant across states. Here, mobility reduces the temptation to deviate without
diminishing cooperative gains, making cooperation increasingly easier to sustain.
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4.2 The role of income inequality

To study the effect of a permanent increase in inequality in all future periods, we distin-
guish between inequality at t = 0 and inequality in future periods t > 0. To do so, we
fix α0 ≥ 0, and consider an increase to α1 > α0 in all subsequent periods. This allows
us to study an increase in future inequality, while keeping total income constant across
periods, while abstracting from income effects at t = 0. Lemma 4 shows that the effect of
inequality on cooperation crucially depends on β and m.

Lemma 4. Let δ(α1;m, β,α0) denote the minimum discount factor required to sustain cooperation
when future inequality is α1, inequality at t = 0 is α0 > 0, income mobility is m ∈ (0,1], and the
contribution norm’s progressivity is β ≥ 0. Then:

(i) If β ≤ 1, then δ(α1;m, β,α0) is weakly decreasing in α1.

(ii) If β > 1, the function δ(α1;m, β,α0) is generally non-monotonic with a single-peaked shape.

(iii) In both cases, the marginal effect of α1 on δ(α1;m, β,α0) is decreasing in m.

Lemma 4 shows that the effect of future inequality on the sustainability of cooperation
depends crucially on the progressivity of the sharing norm and the degree of income mo-
bility. When β < 1, the norm is regressive, so high-income individuals are not excessively
burdened by contributions. In contrast, when β > 1, the norm is progressive placing a
heavier burden on the rich. As inequality rises, so does their cost of cooperation, increas-
ing the temptation to deviate. This initially raises the cooperation threshold δ. However,
at high enough levels of inequality, autarky becomes less attractive: income mobility in-
creases the chance of transitioning to a worse position, reducing the expected value of
deviation. As a result, the threshold δ eventually declines.

This generates a single-peaked relationship between inequality and the cooperation
threshold. Importantly, when β > 1, the sign of the effect of inequality on cooperation
depends on the level of mobility: for low m, inequality may increase the cooperation
threshold (making cooperation harder to sustain), while for high m, it lowers the thresh-
old (making cooperation easier to sustain). Finally, (iii) captures the complementarity
between inequality and mobility: greater mobility amplifies the stabilizing effect of in-
equality on cooperation, further lowering the discount factor required to sustain it.
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β = 1 (Proportional contributions) β = 4 (Progressive contributions)

Figure 3: Minimum discount factor δ required for cooperation as a function of future inequality
α1, for various levels of income mobility m. Parameters: ρ = 1, α0 = 0.5, N = 5.

4.3 Long-term norm selection

We now study which contribution norm β is most conducive to the sustainability of coop-
eration in the long run. Our aim is to endogenize β by appealing to an evolutionary logic.
Consider a population in which contribution norms are subject to selection: groups that fail
to sustain cooperation are less likely to survive or be imitated, while groups that succeed
in maintaining cooperation are more likely to reproduce their norm.

Formally, let δ(β;α,m) denote the minimum discount factor required to sustain coop-
eration, given inequality α, income mobility m, and the norm’s progressivity β. Assume
individuals have heterogeneous discount factors, with δi ∈ (0,1) independently drawn
from a continuous distribution F(·). For any given (α,m), cooperation is viable for indi-
viduals with δi ≥ δ(β;α,m). Therefore, the share of individuals who can cooperate under
a given norm is given by 1− F (δ(β;α,m)) .

Selection favor the norm with the progressivity that minimize δ, as they maximize
the probability of sustaining cooperation within the group. This motivates defining the
long-run norm as:

β∗(α,m) = argmin
β≥0

δ(β;α,m). (12)

Proposition 2 characterizes how β∗(α,m) varies with inequality and mobility.16

Proposition 2 (Long-run norm selection). Let β∗(α,m) = argminβ≥0 δ(β;α,m). Then:

16These properties are established computationally using the method described in Figure 4, which nu-
merically minimizes the cooperation threshold over a grid of β values.
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1. For fixed m, the mapping α 7→ β∗(α,m) is generally non-monotonic: it tends to increase
with inequality at low levels of α, and decrease at high levels of α.

2. For fixed α, higher mobility m is associated with a lower optimal norm β∗(α,m).

The selected norm β∗(α,m) can be either progressive (β∗ > 1) or regressive (β∗ < 1),
depending on the environment. When inequality is low, progressive norms are more
effective at triggering cooperation by encouraging greater transfers from high earners.
As inequality rises, however, overly progressive norms become harder to sustain, and
regressive rules may perform better by reducing the burden on top earners. Similarly,
higher mobility reduces the need for strong norm enforcement, since individuals are more
willing to cooperate in anticipation of future income changes.

Figure 4: β∗(α,m) as a function of α, for two values of m. Each curve reports the value of β that
minimizes the cooperation threshold δ(β;α,m), computed via a two-stage grid search with local
refinement (using 1000 values for β). For clarity, the resulting series is smoothed using a Savitzky–
Golay filter. The dashed line marks β = 1, corresponding to a flat contribution rule. Parameters:
N = 6, ρ = 4.

Figure 4 illustrates the relationship between inequality and the optimal contribution
norm for two mobility values. When inequality is low, the optimal norm rises steeply
as progressive rules help enforce cooperation. However, beyond a critical point, further
increases in inequality reduce the sustainability of steep norms, and β∗ declines. The
figure also shows that for any level of inequality, higher mobility leads to a lower optimal
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norm, consistent with Proposition 2.17

5 Application: Government’s Optimal Taxation

We extend the baseline model by introducing a preliminary stage in which the govern-
ment sets a (time-invariant) proportional income tax. This tax is set before the repeated
game of voluntary transfers begins. Players then engage in private redistribution on each
period, based on their disposable (post-tax) incomes. This two-stage structure allows us
to study how government taxation interacts with endogenous cooperation and to what
extent public policy can facilitate—or crowd out—informal redistribution.

To analyze the government’s role, we consider a setting in which each player receives
a pre-tax income wi, and the government levies a proportional tax schedule:

T(wi) = τwi, (13)

where τ ∈ [0,1] is the tax rate. Post-tax consumption, after voluntary transfers and public
redistribution, is given by:

xi(θ) = yi[1− θ(yi)] +
1
N ∑

j
θ(yj)yj +

1− s
N ∑

j
T(wj)︸      ︷︷      ︸
= τ

. (14)

The first term of equation 14 represents what individual i keeps after making their volun-
tary contribution, the second term reflects their equal share of the collectively provided
transfers, and the third term captures their share of redistributed tax revenue. The pa-
rameter s ∈ (0,1] captures the exogenous cost of public funds, which could stem from
administrative burdens or distortionary effects of taxation.

When s > 0, public redistribution is less efficient than private redistribution, which
creates a trade-off for the planner. If s = 0, redistribution through taxes would dominate,
making voluntary transfers irrelevant and leading the government to fully equalize post-
tax incomes by setting T(wi) = wi. To maintain a meaningful role for voluntary transfers,
we assume s > 0 throughout.18

17The function δ(β;α,m) is computed numerically over a discrete grid. As a result, β∗(α,m) may exhibit
small jumps or flat regions, especially around local minima. Proposition 2 focuses on the robust qualitative
patterns.

18This is akin to assuming that the government faces an exogenous revenue requirement R > 0, leading
to a constraint of the form GP + R ≤ T (Sandmo, 1975).
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5.1 The Planner’s Problem

The planner’s objective is to maximize social welfare by choosing an optimal redistribu-
tion policy τ. Welfare depends not only on the resulting payoffs under autarky and coop-
eration, but also on whether cooperation is sustainable given the underlying incentives.
Formally, the planner evaluates:

W(τ;δ) =


V̂a

i (τ) if δ < δ(τ),

V̂c
i (τ) if δ ≥ δ(τ),

(15)

where δ(τ) denotes the minimum discount factor that makes cooperation incentive-compatible
under tax policy τ. The functions V̂a

i (τ) and V̂c
i (τ) represent average utility across players

in the autarkic and cooperative outcomes, respectively:

V̂a
i (τ) =

1
N

N

∑
i=1

u (xa
i (τ)) , (16)

V̂c
i (τ) =

1
N

N

∑
i=1

uc
i (τ), (17)

where xa
i (τ) denotes individual consumption under autarky. The planner chooses the tax

rate τ to maximize expected welfare, taking into account both economic outcomes and
the incentives for cooperation. A central challenge is that both the value of cooperation
and the incentive constraint—summarized by δ(τ)—depend on the tax policy itself. Even
when the discount factor δ is fixed, the planner may be able to induce or discourage coop-
eration through their choice of τ ∈ [0,1]. Taxation thus shapes not only the redistribution
of income, but also the sustainability of cooperative behavior in the repeated game.

Proposition 3 formalizes the distinction between two regimes: when cooperation can
be sustained and when it cannot. It also describes how the optimal tax responds to
changes in inequality, mobility, and norm’s progressivity in each regime.

Proposition 3. Let δ(τ) denote the minimal discount factor required to sustain cooperation at
tax rate τ. Let τa(α) = argmaxτ∈[0,1] V̂a

i (τ) denote the optimal tax rate under autarky.

Then:

• If there exists τ ∈ [0,1] such that δ = δ(τ), then cooperation is attainable, and the planner

21



implements:
τ∗ = τ†(δ) such that δ(τ†) = δ,

with the following comparative statics:

∂τ†

∂m
< 0,

∂τ†

∂β
< 0,

∂τ†

∂α
< 0.

• If no such τ ∈ [0,1] exists (i.e., δ < minτ δ(τ)), then cooperation is not sustainable, and the
planner chooses:

τ∗ = τa(α),

with:
∂τa

∂m
= 0,

∂τa

∂β
= 0,

∂τa

∂α
> 0.

Proposition 3 distinguishes two regimes depending on whether cooperation can be
sustained at any feasible tax rate. In the autarkic regime, where δ < δ(τ) for all τ ∈
[0,1], private cooperation is not feasible. Therefore, redistribution occurs solely through
taxation. In this case, the optimal tax rate τa depends only on inequality: as α increases,
the planner’s incentive to reduce income dispersion leads to a higher tax. Since private
transfers are absent in this regime, income mobility m and the norm’s progressivity β

have no effect on the planner’s choice.

In the cooperative regime, where δ = δ(τ) for some τ ∈ [0,1], the planner implements
cooperation exactly at the threshold of sustainability. That is, the planner selects a tax rate
τ†(δ) such that cooperation becomes just viable in equilibrium. This tax rate enables both
public and private redistribution. Because private transfers depend on income mobil-
ity and the norm’s progressivity, higher m and β improve the effectiveness of voluntary
redistribution, allowing the planner to reduce reliance on taxation. Moreover, greater
inequality α increases the volume of private transfers once cooperation is in place, fur-
ther reducing the optimal tax burden. As a result, the optimal cooperative tax rate τ† is
decreasing in all three parameters: m, β, and α.
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Figure 5: Welfare-maximizing tax rate τ∗ as a function of inequality α, for different values of
income mobility m and norm’s progressivity β. Parameters: ρ = 0.5, µ = 1, s = 0.09, δ = 0.7,
N = 3.

Figure 5 shows how the welfare-maximizing tax rate τ∗ varies with inequality α for
four combinations of income mobility m and norm’s progressivity β. Each curve exhibits a
threshold value α at which cooperation becomes sustainable. To the left of this threshold,
the planner operates in the autarkic regime; to the right, in the cooperative regime. The
transition is marked by a vertical line for each curve.

Comparing the blue and orange lines (both with m = 0.8), we see that increasing the
norm’s progressivity from β = 1.5 to β = 2 shifts the cooperation threshold leftward and
lowers the optimal tax under cooperation. This illustrates that more progressive norms
facilitate cooperation at lower inequality levels and reduce the need for taxation. Next,
comparing the blue and red lines (both with β = 2), we observe that reducing mobility
from m = 0.8 to m = 0.4 enables cooperation to emerge at a lower level of inequality.
It also leads to a higher cooperative tax rate, since lower mobility reduces endogenous
transfers. The green line, with m = 0.8 and β = 0, serves as a benchmark without public
cooperation. This trajectory aligns with the autarkic segments of the other curves, con-
firming that in the absence of cooperation, the optimal tax rises with inequality and is
unaffected by m or β.
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6 Conclusions

This paper studies how income mobility and income inequality jointly shape the sus-
tainability of cooperation in repeated interactions. We introduce a tractable framework
of a risk-sharing organization in which individuals decide how much of their income to
transfer to others. A key feature of the model is that individuals change their income over
time, while keeping the organization’s income distribution constant. We characterize the
conditions under which contribution norms—informal agreements about how much each
member should transfer—can be sustained in equilibrium. Specifically, we find that in-
come mobility has a positive effect on sustaining cooperation. In contrast, the effect of
inequality is ambiguous and depends on the progressivity of the contribution norm and
the degree of mobility.

Our framework relates to a variety of contexts where cooperation is crucial. Exam-
ples include risk-sharing between workers (Ligon et al., 2002; Bigsten et al., 2003), local
tax agreements (Wolf-Powers, 2010), village-based health insurance schemes (Jajoo, 1992;
Ahmed et al., 2016), or fiscal arrangements within regions or monetary unions (Ventura,
2019). In all these cases, participants repeatedly interact, face unequal incomes, and must
rely on informal or partially enforced norms to govern transfers. Our results suggest that
income mobility—whether driven by institutional design or economic shocks—plays a
central role in determining the sustainability of such arrangements.

One could extend the proposed framework in several dimensions. First, while our
baseline model assumes self-interested individuals, incorporating social preferences such
as altruism (Becker, 1974), reciprocity (Rabin, 1993), or inequity aversion (Fehr and Schmidt,
1999) may alter our conclusions. Second, introducing heterogeneity in, for example, risk
preferences or income risk could generate additional insights into the effect of income
dynamics on cooperation (Briys and Schlesinger, 1990; Huber, 2022). Third, allowing
individuals to save across periods would introduce a trade-off between informal insur-
ance and self-insurance, providing a connection with models of precautionary savings
(Kocherlakota, 2004; Buera and Shin, 2011). We leave these extensions for future research.
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A Appendix A: Mathematical Proofs

A.1 Preliminaries

Lemma 5. Let u aut = 1
N ∑N

j=1 u(wj), uc
i = u

(
(1− θ(wi))wi +

1
N ∑N

j=1 θ(wj)wj

)
, and u coop =

1
N ∑N

j=1 uc
j . The values of autarky, deviation, and cooperation are given by:

Va
i =

1
1− δ(1−m)

u(wi) +
δm

(1− δ)(1− δ(1−m))
u aut, (18)

Vd
i = u

(
wi +

1
N ∑

j,i
θ(wj)wj

)
+ δ

[
(1−m)

(
u(wi) + δm u aut

1− δ(1−m)

)
+ m u aut

]
, (19)

Vc
i =

(1− δ)uc
i + δm u coop

(1− δ)(1− δ(1−m))
. (20)

Proof of Lemma 5

Autarky-algebra. Define the sum of autarky values across income-types as S = ∑N
j=1 Va

j ,
we can the re express the equation above as:

Va
i = u(wi) + δ

[(
1− N − 1

N
m
)

Va
i +

m
N

(S−Va
i )

]
. (21)

If we take the sum of the expression above we obtain:

S =
N

∑
i=1

u(wi) + δ

[(
1− N − 1

N
m
)

S +
m
N

(S · N − S)
]

. (22)

By simple algebra we obtain:

S =
∑N

i=1 u(wi)

1− δ
. (23)
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Substituting the value of S into the expression for Va
i yields:

Va
i =

1
1− δ(1−m)

[
u(wi) +

δm
N

∑N
i=1 u(wi)

1− δ

]
. (24)

Autarky values are monotonically increasing in income levels wi.

Algebra of deviations. We have that:

Vd
i = u

(
wi +

∑j,i wj

N

)
+ δ

[(
1− N − 1

N
m
)

Va
i + ∑

j,i

1
N

mVa
j

]

= u
(

wi +
∑j,i wj

N

)
+ δ

[
(1−m)

(
u(wi) + δ m

N S
1− δ(1−m)

)
+

m
N

S
]

Proof of Lemma 2

Proof. Take k > i, then:

Vd
i −Vd

k = u
(

wi +
∑j,i wj

N

)
− u

(
wk +

∑j,k wj

N

)
+ δ

[(
1− N − 1

N
m
)
(Va

i −Va
k ) +

m
N

(Va
k −Va

i )

]
= u

(
wi +

∑j,i wj

N

)
− u

(
wk +

∑j,k wj

N

)
+ δ [(1−m) (Va

i −Va
k )]

> 0

Since both terms in the last line are positive. The instantaneous utility terms decreases in
wi, which can be seen by noting that:

wi +
∑j,i wj

N
= wi

(
N − 1

N

)
+

W
N

.

for W = ∑N
j=1 wj.
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Proof of Lemma 4

Proof. Consider now:

∆i(δ) = Vi
dev −Vi

coop

= u
(

wi +
∑j,i wj

N

)
+ δ

[
(1−m)

(
u(wi) + δ m

N S
1− δ(1−m)

)
+

m
N

S
]
− u(w̄)

1− δ
,

= u
(

wi +
∑j,i wj

N

)
+ δ

(1−m)

u(wi) + δ m
N

∑N
i=1 u(wi)

1−δ

1− δ(1−m)

+
m
N

∑N
i=1 u(wi)

1− δ

− u(w̄)

1− δ
,

where w̄ = ∑N
i=1 wi/N is the average income. We are looking for conditions such that

∆i(δ) < 0, which are given by:

0 > u
(

wi +
∑j,i wj

N

)
+ δ

(1−m)

u(wi) + δ m
N

∑N
i=1 u(wi)

1−δ

1− δ(1−m)

+
m
N

∑N
i=1 u(wi)

1− δ

− u(w̄)

1− δ
.

Proof of Proposition 1

Proof. Define the coefficients:

c0 = u
(

wi +
∑j,i wj

N

)
,

c1 = u(wi),

c2 = u (w) = u

(
∑N

i=1 wi

N

)
,

c3 =
1
N

N

∑
i=1

u(wi).
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The value of deviation is:

Vdev
i = u

(
wi +

∑j,i wj

N

)
+ δ

[
(1−m)

(
u(wi) + δ m

N S
1− δ(1−m)

)
+

m
N

S
]

= c0 + δ

[
(1−m)

( c1 + δ m
1−δ c3

1− δ(1−m)

)
+

m
1− δ

c3

]
.

The value of cooperation is:

Vcoop =
1

1− δ
u

(
∑N

i=1 wi

N

)
=

1
1− δ

c2.

We aim to analyze:

∆(δ) = Vcoop −Vdev
i > 0,

which leads to:

∆(δ) =
c2

1− δ
− c0 − δ

[
(1−m)

( c1 + δ m
1−δ c3

1− δ(1−m)

)
+

m
1− δ

c3

]
> 0.

⇒ c2 − c0(1− δ)− δ(1− δ)

[
(1−m)

( c1 + δ m
1−δ c3

1− δ(1−m)

)
+

m
1− δ

c3

]
> 0.

⇒ (1− δ(1−m))c2 − (1− δ(1−m))c0(1− δ)

− δ(1−m)

[
(1− δ)(c1 + δ

m
1− δ

c3) + mc3(1− δ(1−m))

]
> 0.

⇒ c2 − c0 − δ((1−m)c2 − c0 − c0(1−m))− δ2c0(1−m)

− δ((1−m)(c1 + δ(mc3 − c1)) + mc3 − δmc3(1−m)) > 0.

⇒ c2 − c0 + δ[c0 −mc3 − (1−m)(c2 − c0 + c1)]

+ δ2(1−m)(c1 − c0) > 0.

Analyzing the roots. The quadratic inequality is given by:

c2 − c0 + δ [c0 −mc3 − (1−m)(c2 − c0 + c1)] + δ2(1−m)(c1 − c0) > 0.

Rewriting this in standard quadratic form, we have:

Aδ2 + Bδ + C = 0,
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where the coefficients are defined as:

A = (1−m)(c1 − c0),

B = c0 −mc3 − (1−m)(c2 − c0 + c1),

C = c2 − c0.

To analyze the sign of each coefficient, note that from the given inequalities c0 > c1 >

c2 > c3:

1. For A, since c1− c0 < 0 and 1−m > 0 for m ∈ [0,1), it follows that A = (1−m)(c1−
c0) < 0. Thus, the parabola opens downward. 2. For C, since c2 − c0 < 0, it follows that
C < 0. 3. For B, we observe that c0 −mc3 > 0 (since c0 > c3 and m ∈ [0,1)). Additionally,
the term −(1−m)(c2 − c0 + c1) contributes negatively. Therefore, B > 0.

The roots of the quadratic equation are given by:

δ1,2 =
−B±

√
B2 − 4AC

2A
.

Consider the negative root δ1. We can use the fact that c0 > c1 > c2 > c4, and that the
discriminant is minimal for either A = 0 or C = 0 to find a lower bound for this root:

δ1 ≥
−B +

√
B2 − 0

2A
(25)

=
−B
A

(26)

=
c0 −mc3 − (1−m)(c2 − c0 + c1)

−(1−m)(c1 − c0)
(27)

=
c0 − c3

(c1 − c0)
+

c0 − c1 − c2

(c1 − c0)
+

mc0 + c3 − 2mc3

(1−m)(c1 − c0)
(28)

> 1 (29)

This means that we only need to take of the second root of the polynomial.

Bounds for δ2.- Analogously as we did before, the maximal value of the discriminant,
obtained by evaluating A = 0 or C = 0, yield a lower zero bound for the second root:
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δ2 ≥ 0. Finally, the root is maximal when then discriminant is null, i.e:

δ1 ≤
−B +

√
0

2A

=
−B
2A

=
c0 − c3

2(c1 − c0)
+

c0 − c1 − c2

2(c1 − c0)
+

mc0 + c3 − 2mc3

2(1−m)(c1 − c0)

< 1
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